Æ Andit

Divisione Fasteners

Dal 1 Agosto 2009 è effettiva la fusione per incorporazione di Andit spa in GANDINI SPA - Sesto San Giovanni MI

SKF Indice

GIUNTI		
	Introduzione giunti serie OK	2
	OKC - Giunti a manicotto	8
	OKF - Giunti a manicotto con flangia	10
	OKCS - Giunti a manicotto corti	11
	Introduzione giunti serie OKCX	
	OKCX - Giunti a manicotto leggeri ad elevata trasmissionepag.	13
	pag.	
	OKCK - Giunto ad anello per trasmissione con assi sovrappostipag.	15
-	enert diame de anone per traemicolorie cen acor cevrappecti	10
	Attrezzature per montaggio e smontaggio	16
RUSSOLE per	calettamento eliche, ANELLI e DADI IDRAULICI	10
BUSSULE PER	OKOO - Bussole di calettamento elichepag.	1Ω
	OKTH - Dadi idraulici per calettamento eliche	
	OKTC - Anelli idraulici per calettamento eliche	
BULLONI SUPE		19
DOLLON SOI L	Introduzione bulloni Supergrip	20
	Montaggio e rimozione	
To the second se	OKBC - Bulloni Supergrip compatti per giunti turbina pag.	
1	OKBS - Bulloni Supergrippag.	
	OKBT - Bulloni di tensionamento	
of a	OKBD - Spine di centratura ad espansione	
	Raccomandazioni per la progettazione pag.	
14.18	Utensili per allineamento Supergrip	
CUECK HOT	COLD TIGHT - Tensionatori idraulici bulloneria cassa turbina pag.	29
CHECK LIST - S	Chede per ordinazione OKC OKE OKOO OKTC OKBS OKBC	00
	OKC OKE OKOO OKTC OKBS OKBC nag	:3(1

1

L'unione intelligente:

eseguite una giunzione in maniera intelligente!

Lasciate che il giunto OK lavori per voi.

Risparmierete tempo e denaro!

Con l'utilizzo dei giunti OK nella giunzione di due alberi, vi avvarrete della nostra efficace tecnologia dell'iniezione d'olio.

La preparazione degli alberi è semplice. Non c'è da realizzare nessuna cava per chiavette, nessuna conicità né tantomeno da utilizzare anelli di spinta.

Durante il montaggio di un giunto OK, una sottile bussola con conicità sulla superficie esterna scivola sugli alberi da collegare. Un robusto manicotto esterno, la cui superficie interna sposa la conicità della bussola, è sovrapposto a quest'ultima.

Viene quindi pompato un normale olio minerale tra le due superfici coniche a contatto. Mettendo in pressione una camera idraulica realizzata nel manicotto esterno stesso, si spinge quest'ultimo sulla bussola interna.

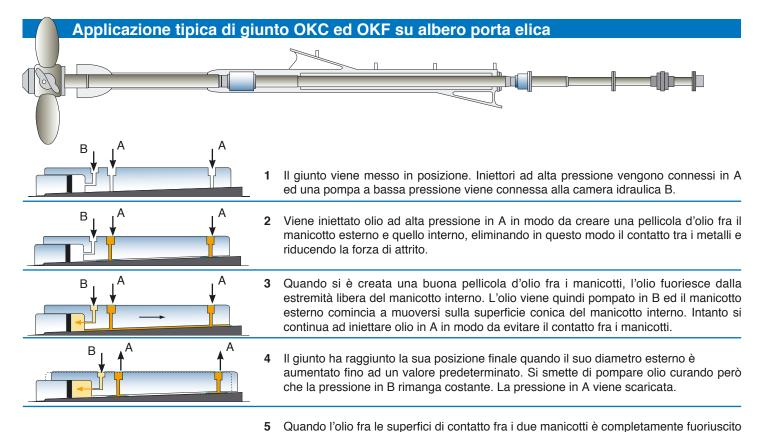
Quando il manicotto ha raggiunto la sua posizione finale, per effetto della conicità contrapposta si crea una interferenza tra le superfici a contatto, proprio come se il manicotto esterno fosse stato forzato a caldo. Ma non è necessario nessun tipo di riscaldamento delle parti ed il giunto può essere smontato altrettanto facilmente di come è stato montato.

Questo efficace utilizzo dell'attrito permette al giunto OK di trasmettere la coppia e la spinta assiale attraverso tutta la superficie degli alberi in presa.

Non ci sono infatti picchi di tensione in corrispondenza di intagli. Non c'è neanche usura da sfregamento in presenza di urti o di inversioni di carico.

5KF Giunti serie OK

I giunti SKF serie OKC ed OKF presentano vantaggi che non è possibile raggiungere con i giunti tradizionali. La facile procedura di montaggio e smontaggio, l'alto momento torcente trasmissibile, che sono caratteristici dei giunti serie OK, sono raggiunti per mezzo di una potente forza di attrito. Nei cinque punti seguenti viene esposto il funzionamento di questi giunti. Fino al 2005 più di 36.000 giunti sono stati usati nelle più svariate applicazioni.


I giunti serie OKC (Fig.1) sono sul mercato sin dai primi anni '40. I giunti OKC sono comunemente usati in tutto il mondo da famosi costruttori di eliche a passo variabile, ma vengono anche usati per altre applicazioni quali: laminatoi, generatori a turbina, motori diesel, pompe, argani, motoriduttori, ecc.

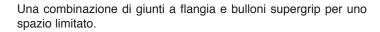
I giunti OKCS hanno uno speciale disegno che consente la loro applicazione nella costruzione di motori ove la potenza trasmissibile richiesta non è così alta rispetto al diametro dell'albero.

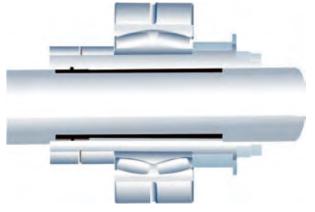
I giunti serie OKF (Fig.2) sono stati sviluppati per creare una facile connessione tra alberi cilindrici e motori o riduttori ad ingranaggi che presentano una flangia all'estremità della connessione.

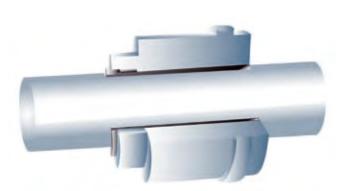
I giunti OKF sono disponibili con o senza unità idraulica di montaggio. Poiché i giunti sono montati su un albero cilindrico e non sono fissati con chiavette, possono venir facilmente regolati assialmente e ruotati nella posizione desiderata.

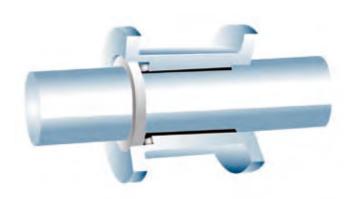
Con i giunti serie OK si ottiene la possibilità di trasmettere alti momenti torcenti grazie al fatto che l'intera superficie di contatto trasmette tale momento, cosa che non accade con i giunti tradizionali. Non sono necessarie chiavette. Questo significa che possono essere ridotte le dimensioni degli alberi e dei giunti. I giunti OK comportano procedure di montaggio e smontaggio semplificate. I giunti di più grandi dimensioni che una volta potevano solo essere calettati a caldo possono essere ora montati a freddo con il sistema OK.

e l'attrito fra le superfici è stato ristabilito, la bassa pressione in B viene scaricata. Tutte le connessioni dell'olio vengono chiuse. Le parti del giunto esposte vengono


coperte con un antiruggine ed il giunto è pronto per un lungo servizio.


5KF Giunti su misura serie OK


Accanto alla serie standard di Giunti OK, SKF progetta e realizza giunti OK "fatti su misura" per alberi con diametro uguale e superiore a 100 mm. Alcuni esempi:



Dispositivo a doppio manicotto per l'installazione di un cuscinetto.

Mozzo di giunto a denti.

Giunto a doppia flangia

Giunto idraulico ad anello per trasmissione ad assi sovrapposti.

5KF Giunti serie OK

Potenza trasmissibile

Il momento torcente trasmesso dal giunto OKC è direttamente proporzionale alla pressione superficiale fra il manicotto interno e l'albero dopo che il manicotto esterno è stato montato assialmente sul manicotto interno. La sovrapposizione necessaria si ottiene quando il manicotto esterno ha raggiunto l'incremento di dimensione Δ per giunti OKC e OKCS o l'avanzamento C dato in tabella per i giunti OKF.

Questa condizione assicura una pressione di contatto di 120 N/mmq, per i giunti OKC e di 100 N/mmq per i giunti OKF.

Le tabelle indicano il massimo momento torcente M_tmax che può essere trasmesso calcolato secondo la seguente equazione:

$$M_t max = \frac{\pi d_a^2 \cdot B \cdot p \cdot \mu}{2 \cdot 10^3} (Nm)$$

Dove d_a= diametro dell'albero in mm.

B= lunghezza effettiva di pressione (uguale a d_a) in mm

p= minima pressione superficiale fra albero e manicotto interno in N/mmq (120N/mmq. per OKC ed OKCS e 100 N/mmq. per OKF) μ =coefficiente di attriro (0,14)

Se il giunto è soggetto a forze assiali, generalmente i loro effetti

sulla capacità di trasmissione della potenza sono insignificanti. Per una forza assiale F_a in N e diametro albero d_a in mm. la torsione trasmissibile è ottenuta secondo la seguente equazione:

$$M_t = \sqrt{M_t max^2 - \left[\frac{F_a x d_a^2}{2 x 10^3} \right]}$$

Il momento torcente ammissibile viene ottenuto con:

$$M = \frac{M_{,} max \circ M_{,}}{f}$$

Dove f è un fattore di sicurezza che può essere selezionato secondo la seguente tabella.

Fattore di sicurezza "f" a differenti carichi

Tipo di propulsione	Tipo di carico sulla macchi	na condotta	
	Carico uniforme	Carichi d'urto moderati	Carichi d'urto pesanti
	Pompe centrifughe Ventole Convogliatori leggeri Turbo compressori Agitatori	Compressori a pistoni Piccole pompe a pistoni Macchine da taglio utensili Macchine per imballaggio Macchine per la lavorazione del legno	Presse Trafilatrici Piallatrici Grossi compressori a Pistoni
	Gruppo 1	Gruppo 2	Gruppo 3
Motore elettrico, turbina	2-2.25	2.25-2.5	2.5-2.75
Motore a pistoni a cilindri multipli	2.25-2.5	2.5-2.75	2.75-3.0
Motore a pistoni ad un solo cilindro	2.75-3.0	3.0-3.25	3.25-4.0

Quando il giunto viene utilizzato per applicazioni marittime, il fattore di sicurezza deve essere selezionato in base a quanto richiesto dall'Ente di classificazione responsabile per le approvazioni tecniche.

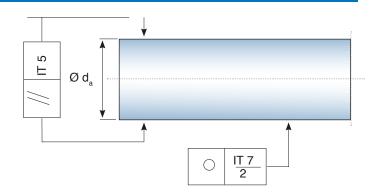
Approvati dalle principali società di classificazione

La connessione di alberi con giunti rigidi OK è una soluzione rapida in uso in applicazioni terrestri e navali da più di 50 anni.

I giunti sono ben noti nel mondo per la loro alta qualità, il design creativo e la sicurezza nell'uso.

Durante la produzione ogni passo è controllato con cura ed i giunti finiti sono soggetti ad una rigida ispezione finale che riguarda le misure e la qualità dell'acciaio prima della consegna.

I giunti sono anche approvati da tutte le principali società di classificazione come la Det Norske Veritas.


Particolare attenzione è riservata alla cura della salubrità e della sicurezza, sia per l'ambiente esterno come per l'ambiente di lavoro.

5KF Alberi Caratteristiche

Ø Albe	ero	Tolleranza h7	Circolarità O	Parallelismo // IT5
oltre	fino a			
mm	mm	μ m	μ m	μ m
100	120	0 / - 35	17,5	15
120	180	0 / - 40	20,0	18
180	250	0 / - 46	23,0	20
250	315	0 / - 52	26,0	23
315	400	0 / - 57	28,5	25
400	500	0 / - 63	31,5	27
500	630	0 / - 70	35,0	29
630	800	0 / - 80	40,0	32
800	1000	0 / - 90	45,0	35

Per facilitare l'allineamento degli alberi usando i giunti OKC ed OKCS uno degli alberi deve essere progettato in modo tale che il giunto possa scivolare lungo esso abbastanza da lasciare in vista l'estremità dell'albero stesso.

La rugosità della superficie deve essere contenuta entro Ra 2.5 μ m. Tolleranza ISO h8 da applicare a giunti per alberi con diam. da 25 a 90 mm.

Tolleranza ISO h7 per diametri maggiori.

Tavola di conversione

Conve	Conversione: millimetri pollici												
Ø albe	ero			Toll	eranza h7	•							
				sco	stamento								
mm		pollici		mm		ро	Ilici						
oltre	fino a	oltre	fino a	sup	inf	su	p inf						
100	120	3.937	4.724	0	- 0,035	0	- 0.001378						
120	180	4.724	7.087	0	- 0,040	0	- 0.001575						
180	250	7.087	9.843	0	- 0,046	0	- 0.001811						
250	315	9.843	12.402	0	- 0,052	0	- 0.002047						
315	400	12.402	15.748	0	- 0,058	0	- 0.002244						
400	500	15.748	19.685	0	- 0,063	0	- 0.002480						
500	630	19.685	24.803	0	- 0,070	0	- 0.002756						
630	800	24.803	31.496	0	- 0,080	0	- 0.003150						
800	1000	31.496	39.370	0	- 0,090	0	- 0.003543						

Lunghezza	1 mm = 0.03937 in
	1 in = 25,4 mm
Massa	1 kg = 2.205 lb
	1 lb = 0,4536 kg
Forza	1 N = 0.225 lbf
	1 lbf = 4.45 N
Torsione	1 Nmm = 0.00885 in.lbf
	1 Nm = 8.85 in.lbf
	1 lbf.in = 113 Nmm = 0.113 Nm
	1 lbf.ft = 1356.23 Nmm = 1.35623 Nm
Potenza	1 W = 0.00136 HP
	1 HP = 736 W
Pressione	1 MPa = 1 N/mm ² = 145 psi
	1 psi = 0.007 N/mm ² = 0.007 MPa
Viscosità cinematica	1 mm ² /s = 1 cSt
Temperatura	0 °C = 32 °F
	°F = 1.8 x °C + 32

Giunti OKC su alberi cavi

Il manicotto deve essere maggiormente sovrapposto negli alberi cavi che negli alberi piani se si vuol ottenere la stessa pressione e capacità di trasmissione della potenza. Gli alberi devono anche essere rinforzati per mezzo di manicotti alloggiati in cavità ricavate all'interno degli alberi stessi in corrispondenza della sede del giunto e ciò per evitare che la tensione che si crea quando il giunto è montato superi i valori ammessi.

I manicotti di rinforzo devono essere fatti in acciaio ad alta resistenza con punto di snervamento di almeno 850 N/mmq.

La lunghezza del manicotto di rinforzo deve essere uguale al diametro dell'albero d $_{\rm a}$. Il diametro esterno, l'interferenza richiesta fra manicotti ed alberi e l'aumento della lunghezza di sovrapposizione (riduzione della dimensione A3) possono essere ottenuti dalla tavola seguente per diversi valori del rapporto diametri: d $_{\rm o}/{\rm d}_{\rm o}$

Le gamme di tolleranza adatte per il diametro esterno dei manicotti di rinforzo e le cavità negli alberi sono rispettivamente IT6 ed IT7. Le sedi dei giunti devono essere approntate alla prescritta tolleranza di diametro solo dopo che sono stati adattati i manicotti di rinforzo.

Con alberi cavi il cui rapporto dc/da supera 0.55 non può essere ottenuta la normale pressione di contatto e la trasmissione del momento torcente. In questi casi consultare i ns. uffici tecnici.

Esempio:

Un giunto OKC deve essere montato su alberi con diametro esterno 400 mm e foro di 120 mm.

$$d_{0}/d_{0} = 0.3$$

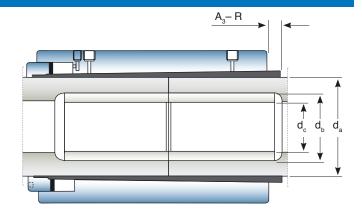
Il diametro esterno del manicotto di rinforzo si ottiene da:

$$d_{p}/d_{s}=0.49$$
 quindi: $d_{p}=196$ mm

L'interferenza ∂ si ottiene da:

$$\partial/d_b=0.0013$$
 quindi: $\partial=0.25$ mm

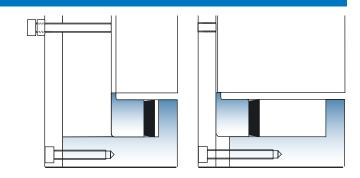
L'aumento della distanza di sovrapposizione R si ottiene dal rapporto:


$$R/d_a = 0.009 \text{ mm}.$$

La dimensione A3 in tabella a pag.8 (30 mm.) deve essere ridotta di 3.6 mm.

5KF Alberi Caratteristiche

d _c	d _b	9	R	
d _a	d	d _b	d _a	
0,1	0,38	0,0006	0,001	
0,15	0,41	0,0008	0,002	
0,2	0,45	0,0009	0,004	
0,25	0,48	0,0011	0,006	
0,3	0,49	0,0013	0,009	
0,35	0,51	0,0015	0,013	
0,4	0,54	0,0017	0,018	
0,45	0,58	0,0019	0,024	
0,5	0,62	0,0021	0,031	
0,55	0,67	0,0023	0,040	


Giunti OKCS su alberi cavi

Per il montaggio di giunti OKCS ed OKF su alberi cavi, prego contattare i nostri uffici.

Dispositivo per bloccare il manicotto esterno

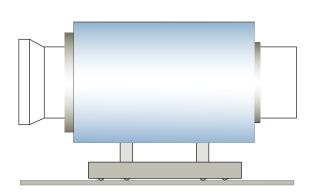
Tutti i giunti OKC per alberi con Diametro superiore a 200 mm e i giunti OKF per alberi con Diametro superiore a 300 mm sono equipaggiati con barre di sicurezza, che impediscono che il manicotto esterno sia accostato involontariamente al manicotto interno durante il trasporto e quando il giunto viene montato e smontato.

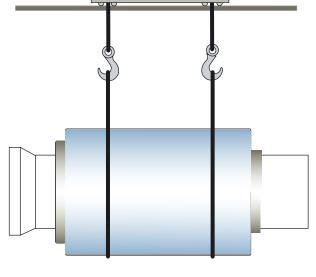
Le barre di sicurezza bloccano anche il dado quando il giunto è stato installato.

Dispositivo per il montaggio di giunti OKC

Per facilitare il montaggio e lo smontaggio dei giunti grandi OKC è consigliabile l'uso di alcuni dispositivi di trasporto. I tipi di dispositivi mostrati permetteranno anche l'allineamento radiale dell'albero. In entrambi i casi gli spostamenti dovrebbero essere fatti in linea con gli alberi.

Un trasporto aereo con due catene fissate è posizionato sopra il giunto.

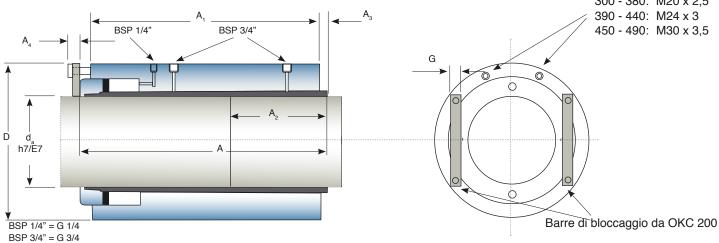

Funi di sostegno sono posizionate come descritto garantendo la sistemazione prescritta.


OPZIONE 1

Un trasporto su ruote si ottiene con due martinetti idraulici, posizionati come mostrato.

Ciò consente al giunto di essere sistemato come prescritto.

OPZIONE 2


OKC 100 - 490 Giunti per alberi

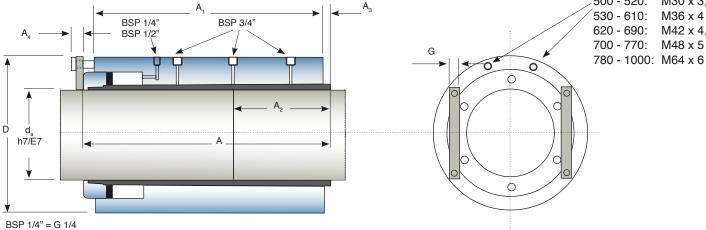
I giunti OKC da 100 a 170 hanno un solo foro di iniezione BSP 3/4"

I giunti OKC da 300 a 490 hanno i fori filettati per il sollevamento ad entrambe le estremità.

300 - 380: M20 x 2,5

Tipo (1)	da	D	Α	A 1	A2	A3 (2)	A4	∆ (3)	G	Peso	M _t max. (4)
	mm	mm	mm	mm	mm	mm	mm	mm		kg	kNm
OKC 100	100	170	275	260	108	8		0,16		30	26,0
OKC 110	110	185	296	280	118	8		0,17		38	34,6
OKC 120	120	200	322	300	130	10		0,18		48	44,9
OKC 130	130	215	344	325	140	10		0,21		58	57,1
OKC 140	140	230	373	350	150	10		0,23		71	71,3
OKC 150	150	250	396	370	162	12		0,23		91	87,7
OKC 160	160	260	420	395	172	12		0,27		101	107
OKC 170	170	280	442	415	182	12		0,27		125	128
OKC 180	180	300	475	445	195	15		0,28		155	152
OKC 190	190	310	505	475	205	15		0,31		175	179
OKC 200	200	330	525	500	215	15	30	0,31	M12-(4x)	215	208
OKC 210	210	340	550	520	225	15	30	0,35	M12-(4x)	230	241
OKC 220	220	360	575	540	235	15	30	0,35	M12-(4x)	265	277
OKC 230	230	370	600	565	250	20	30	0,38	M12-(4x)	285	317
OKC 240	240	390	620	585	260	20	30	0,38	M12-(4x)	330	360
OKC 250	250	400	645	610	270	20	30	0,41	M12-(4x)	350	407
OKC 260	260	420	670	635	280	20	30	0,42	M12-(4x)	410	457
OKC 270	270	440	690	655	290	20	30	0,42	M12-(4x)	470	512
OKC 280	280	450	715	680	300	20	30	0,46	M12-(4x)	510	571
OKC 290	290	470	740	700	315	25	30	0,46	M12-(4x)	580	634
OKC 300	300	480	773	730	325	25	27	0,50	M16-(4x)	625	702
OKC 310	310	500	793	750	335	25	27	0,50	M16-(4x)	700	775
OKC 320	320	520	818	770	345	25	27	0,50	M16-(4x)	790	852
OKC 330	330	530	843	795	355	25	27	0,54	M16-(4x)	830	935
OKC 340	340	550	863	815	365	25	27	0,54	M16-(4x)	930	1020
OKC 350	350	560	888	840	375	25	27	0,57	M16-(4x)	980	1120
OKC 360	360	580	908	860	385	25	27	0,58	M16-(4x)	1080	1220
OKC 370	370	600	928	880	395	25	27	0,58	M16-(4x)	1190	1320
OKC 380	380	610	958	905	410	30	27	0,61	M16-(4x)	1250	1430
OKC 390	390	630	983	925	420	30	27	0,62	M16-(4x)	1370	1550
OKC 400	400	640	1003	950	430	30	27	0,65	M16-(4x)	1440	1670
OKC 410	410	660	1028	975	440	30	27	0,66	M16-(4x)	1 580	1800
OKC 420	420	680	1053	995	450	30	27	0,67	M16-(4x)	1 730	1930
OKC 430	430	690	1073	1015	460	30	27	0,69	M16-(4x)	1 800	2070
OKC 440	440	710	1098	1040	470	30	27	0,69	M16-(4x)	1 960	2220
OKC 450	450	720	1123	1065	485	35	27	0,74	M16-(4x)	2050	2370
OKC 460	460	740	1148	1085	495	35	27	0,74	M16-(4x)	2200	2530
OKC 470	470	750	1 170	1110	505	35	27	0,77	M16-(4x)	2290	2700
OKC 480	480	760	1 195	1135	515	35	27	0,80	M16-(4x)	2360	2880
OKC 490	490	780	1215	1155	525	35	27	0,81	M16-(4x)	2530	3060

- I giunti per misure di albero intermedie sono designati, per esempio, OKC 148
- La quota A3 può essere leggermente diversa da quella indicata quando si raggiunge il valore Δ
- Aumento del diametro esterno Δ dopo il montaggio

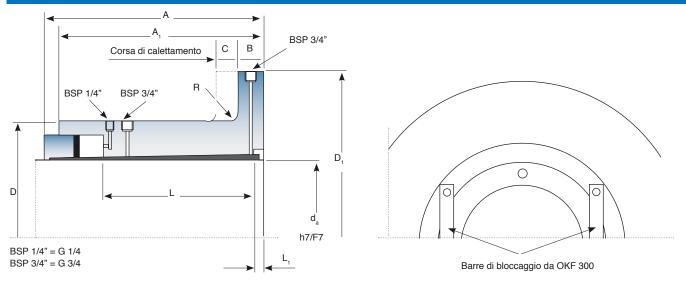

Per ottenere il momento torcente trasmissibile occorre applicare il fattore di servizio. Vedere pag 5 Note: la lunghezza disponibile su uno degli alberi per l'installazione deve essere A +75 mm

OKC 500 - 1000 Giunti per alberi

I giunti OKC da 500 a 1000 hanno i fori filettati per il sollevamento ad entrambe le estremità.

500 - 520: M30 x 3,5 530 - 610: M36 x 4 620 - 690: M42 x 4,5 700 - 770: M48 x 5

Tipo (1)	d _a	D	Α	A1	A2	A3 (2)	A4	Δ(3)	G	Peso	M _t max. (4)
	mm	mm	mm	mm	mm	mm	mm	mm		kg	kNm
OKC 500	500	790	1240	1175	535	35	42	0,84	M20-(4x)	2610	3250
OKC 510	510	810	1265	1200	545	35	42	0,86	M20-(4x)	2820	3450
OKC 520	520	830	1290	1225	560	40	42	0,86	M20-(4x)	3060	3660
OKC 530	530	840	1315	1250	570	40	42	0,89	M20-(4x)	3140	3870
OKC 540	540	860	1340	1275	580	40	42	0,89	M20-(4x)	3400	4100
OKC 550	550	870	1360	1295	590	40	42	0,93	M20-(4x)	3520	4330
OKC 560	560	890	1385	1315	600	40	42	0,93	M20-(4x)	3760	4570
OKC 570	570	900	1405	1335	610	40	42	0,97	M20-(4x)	3840	4820
OKC 580	580	920	1425	1360	620	40	42	0,96	M20-(4x)	4150	5080
OKC 590	590	930	1455	1385	635	45	42	0,99	M20-(4x)	4270	5340
OKC 600	600	940	1480	1410	645	45	42	1,02	M20-(4x)	4400	5620
OKC 610	610	960	1500	1430	655	45	42	1,03	M20-(4x)	4680	5900
OKC 620	620	970	1525	1455	665	45	42	1,06	M20-(4x)	4840	6200
OKC 630	630	990	1545	1475	675	45	42	1,06	M20-(4x)	5140	6500
OKC 640	640	1010	1570	1495	685	45	42	1,07	M20-(4x)	5460	6820
OKC 650	650	1020	1595	1520	695	45	42	1,10	M20-(4x)	5620	7140
OKC 660	660	1040	1625	1545	710	50	42	1,11	M20-(4x)	5940	7480
OKC 670	670	1050	1650	1575	720	50	42	1,14	M20-(4x)	6150	7820
OKC 680	680	1070	1670	1590	730	50	42	1,14	M20-(4x)	6480	8180
OKC 690	690	1080	1695	1615	740	50	42	1,18	M20-(4x)	6670	8540
OKC 700	700	1090	1720	1640	750	50	42	1,21	M20-(4x)	6830	8920
OKC 710	710	1100	1745	1665	760	50	42	1,24	M20-(4x)	7010	9310
OKC 720	720	1120	1765	1680	770	50	42	1,25	M20-(4x)	7390	9700
OKC 730	730	1130	1790	1700	785	55	42	1,28	M20-(4x)	7550	10100
OKC 740	740	1150	1815	1730	795	55	42	1,28	M20-(4x)	7990	10600
OKC 750	750	1160	1835	1750	805	55	42	1,32	M20-(4x)	8180	11000
OKC 760	760	1180	1860	1770	815	55	42	1,32	M20-(4x)	8660	11400
OKC 770	770	1190	1886	1795	825	55	42	1,36	M20-(4x)	8860	11800
OKC 780	780	1210	1910	1815	835	55	42	1,36	M20-(4x)	9330	12300
OKC 790	790	1220	1930	1840	845	55	42	1,39	M20-(4x)	9530	12800
OKC 800	800	1240	1960	1865	860	60	42	1,39	M20-(4x)	10070	13300
OKC 820	820	1260	2015	1920	880	60	42	1,47	M20-(4x)	10520	14300
OKC 840	840	1300	2055	1960	900	60	42	1,47	M20-(4x)	11560	15400
OKC 860	860	1330	2105	2005	920	60	42	1,51	M20-(4x)	12370	16500
OKC 880	880	1360	2155	2055	945	65	42	1,54	M20-(4x)	13230	17700
OKC 900	900	1390	2200	2100	965	65	42	1,58	M20-(4x)	14020	18900
OKC 920	920	1430	2245	2145	985	65	42	1,59	M20-(4x)	15290	20200
OKC 940	940	1460	2295	2190	1010	70	42	1,62	M20-(4x)	16270	21600
OKC 960	960	1490	2340	2235	1030	70	42	1,66	M20-(4x)	17270	23000
OKC 980	980	1520	2385	2280	1050	70	42	1,69	M20-(4x)	18310	24400
OKC 1000	1000	1550	2430	2325	1070		42	1.73	M20-(4x)	19390	26000


- I giunti per misure di albero intermedie sono designati, per esempio, OKC 148
- La quota A3 può essere leggermente diversa da quella indicata quando si raggiunge il valore Δ
- Aumento del diametro esterno D dopo il montaggio

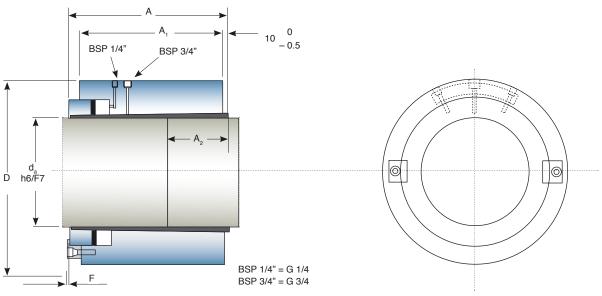
BSP 3/4" = G 3/4

Per ottenere il momento torcente trasmissibile occorre applicare il fattore di servizio. Vedere pag 5 Note: la lunghezza disponibile su uno degli alberi per l'installazione deve essere A +75~mm

5KF OKF 100 - 500 Giunti a Flangia

Il massimo diametro di interasse fori "E" è calcolato come segue: $E = D_1 - (1,6 \text{ x diametro bullone})$

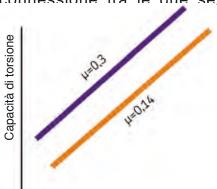
Tipo	d _a	D	D1	Α	A1	В	R	L	L1	С	Peso	M _t max. ⁽¹⁾	Bullone supergrip
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kNm	consigliato
OKF 100	100	165	235	191	188	40	8	120	15	17,5	25	26,0	
OKF 110	110	175	260	210	197	40	9	135	15	18,5	29	34,6	
OKF 120	120	195	285	220	206	40	10	145	15	19,0	39	44,9	
OKF 130	130	205	305	244	230	40	10	165	15	21,5	46	57,1	
OKF 140	140	225	325	255	235	40	11	170	15	22,0	56	71,3	
OKF 150	150	240	345	266	246	40	12	180	15	23,0	66	87,7	
OKF 160	160	255	365	278	257	40	13	195	15	24,5	77	107	
OKF 170	170	265	390	295	274	40	14	205	15	26,0	87	128	
OKF 180	180	290	415	310	288	40	14	215	15	26,5	108	152	
OKF 190	190	295	435	338	311	40	15	230	18	29,5	118	179	
OKF 200	200	315	455	348	320	40	16	240	18	30,0	138	208	
OKF 210	210	325	475	362	338	42	17	250	18	31,5	153	241	
OKF 220	220	345	495	378	353	44	18	265	18	31,5	180	277	
OKF 230	230	350	500	390	365	46	18	275	18	34,5	184	317	
OKF 240	240	370	525	402	376	48	19	285	18	34,5	216	360	
OKF 250	250	380	555	418	392	50	20	300	18	36,0	238	407	
OKF 260	260	400	575	436	408	52	21	310	22	38,0	275	457	
OKF 270	270	420	595	452	424	54	22	325	22	38,0	316	512	
OKF 280	280	430	605	464	435	56	22	335	22	40,0	335	571	OKBS 40
OKF 290	290	445	620	476	447	58	23	345	22	41,5	364	634	
OKF 300	300	460	635	498	463	60	24	360	22	42,0	399	702	
OKF 310	310	475	675	510	479	62	25	370	22	43,5	451	775	
OKF 320	320	495	695	526	494	64	26	380	25	44,5	508	852	
OKF 330	330	505	705	544	512	66	26	395	25	46,5	537	935	
OKF 340	340	525	730	555	522	68	27	405	25	47,0	599	1020	OKBS 50
OKF 350	350	530	735	572	538	70	28	420	25	49,0	615	1120	
OKF 360	360	550	760	584	550	72	29	430	25	50,0	680	1220	
OKF 370	370	570	810	595	560	74	30	440	25	50,5	770	1320	
OKF 380	380	580	820	612	577	76	30	455	25	51,5	805	1430	
OKF 390	390	600	840	624	588	78	31	465	25	52,5	885	1550	
OKF 400	400	610	855	648	611	80	32	480	25	54,0	930	1670	OKBS 60
OKF 410	410	630	875	660	627	82	33	490	30	55,5	1030	1800	
OKF 420	420	640	890	672	639	84	34	500	30	57,5	1070	1930	
OKF 430	430	655	935	688	654	86	34	515	30	58,0	1170	2070	
OKF 440	440	675	955	700	665	88	35	525	30	58,5	1270	2220	
OKF 450	450	685	970	716	681	90	36	540	30	60,5	1330	2370	
OKF 460	460	700	985	728	692	92	37	550	30	61,5	1410	2530	
OKF 470	470	715	1000	740	703	94	38	560	30	62,5	1480	2700	OKBS 70
OKF 480	480	720	1005	758	717	96	38	570	30	65,0	1510	2880	
OKF 490	490	740	1030	770	728	98	39	580	30	66,0	1630	3060	
OKF 500	500	750	1040	790	748	100	40	600	30	67,0	1700	3250	


5KF OKF 510 - 700 Giunti a Flangia

Tipo	d _a	D	D1	Α	A1	В	R	L	L1	С	Peso	M _t max. ⁽¹⁾	Bullone supergrip
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kNm	consigliato
OKF 510	510	770	1090	810	766	102	41	610	35	69,5	1870	3450	
OKF 520	520	790	1115	820	776	104	42	620	35	70,0	2020	3660	
OKF 530	530	800	1125	834	789	106	42	630	35	72,0	2080	3870	OKBS 80
OKF 540	540	815	1145	845	800	108	43	640	35	73,5	2190	4100	
OKF 550	550	825	1155	868	822	110	44	660	35	74,5	2270	4330	
OKF 560	560	845	1175	878	832	112	45	670	35	75,0	2420	4570	
OKF 570	570	855	1190	890	843	114	46	680	35	77,0	2510	4820	
OKF 580	580	875	1235	900	853	116	46	690	35	77,0	2710	5080	
OKF 590	590	885	1245	914	866	118	47	700	35	79,0	2780	5340	
OKF 600	600	895	1260	926	877	120	48	710	35	81,0	2860	5620	
OKF 610	610	910	1275	938	888	122	49	720	35	82,0	2880	5900	OKBS 90
OKF 620	620	920	1290	950	900	124	50	730	35	84,0	3070	6200	
OKF 630	630	940	1310	962	911	126	50	740	35	84,5	3230	6500	
OKF 640	640	960	1330	990	938	128	51	760	40	85,5	3510	6820	
OKF 650	650	970	1345	1004	951	130	52	770	40	87,5	3600	7140	
OKF 660	660	990	1395	1018	961	132	53	780	40	88,0	3750	7480	
OKF 670	670	995	1410	1030	973	134	54	790	40	91,0	3930	7820	OKBS 100
OKF 680	680	1015	1420	1042	984	136	54	800	40	91,5	4130	8180	
OKF 690	690	1025	1435	1054	996	138	55	810	40	93,5	4230	8540	
OKF 700 1) Applicare il fa	700 attore di sicu	1035 rezza a pa	1445 g. 5 per ott	1068 enere il mo	1009 mento terce	140 nte trasm	56 issibile.	820	40	96,0	4330	8920	

5KF OKCS 178 - 360 Giunti per Alberi

Tipo (1)	d _a	D	Α	A ₁	A ₂	F	Peso	M _t max.(2)
	mm	mm	mm	mm	mm	mm	kg	kNm
OKCS 178	178	310	282	244	105,0	8	98	65,0
OKCS 210	210	350	331	295	127,5	8	166	110,0
OKCS 214	214	365	345	308	132,0	8	170	118,6
OKCS 230	230	400	348	315	134,5	8	209	141,0
OKCS 250	250	420	364	328	140,0	8	231	180,0
OKCS 270	270	460	386	350	149,0	8	300	225,0
OKCS 300	300	510	426	385	164,0	9	406	301,8
OKCS 310	310	525	446	400	170,0	9	429	338,8
OKCS 330	330	560	457	410	177,0	9	521	391,5
OKCS 360	360	600	493	455	190,0	9	635	525,0



Il giunto che ripaga subito!

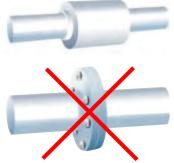
OKCX, una nuova generazione di giunti per alberi con una capacità di trasmissione di momento torcente superiore del 50%.

Il manicotto interno del giunto OKCX è rivestito di carburi utilizzando la tecnologia di riporto al plasma. Questo rivestimento incrementa considerevolmente il coefficiente d'attrito fra il manicotto e l'albero che passa da 0,14 a 0,30 il che è direttamente proporzionale all'aumento della capacità di trasmissione.

Per la progettazione puo i contare su un minor peso, risparmio di spazio, riduzione della pressione sull'albero ed una maggiore connessione fra le due sezioni dell'albero.

Pressione albero

Cambiano le connessioni nelle linee d'assi (FPP) con le eliche a passo fisso


Grazie ad un incremento del momento torcente il giunto OKCX crea nuove possibilità di sostituzione dei problematici giunti a flange nelle linee d'assi con eliche a passo fisso.

Il giunto OKCX rende possibile il risparmio nell'allestimento dell'albero, assemblaggio e disassemblaggio dei giunti e riduce i tempi di fermo in bacino.

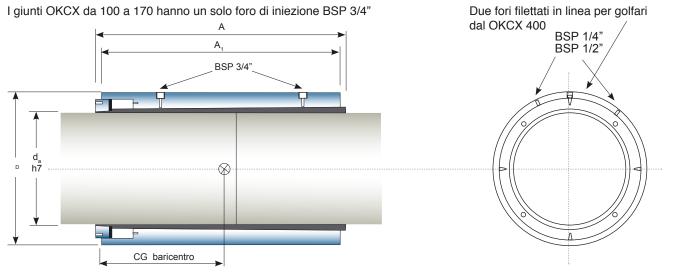
PRESTO RIPAGATI CON IL GIUNTO OKCX

- · Niente bulloni né flange
- · Alberi dritti
- · Semplici procedure di installazione
- · Manutenzione periodica più breve

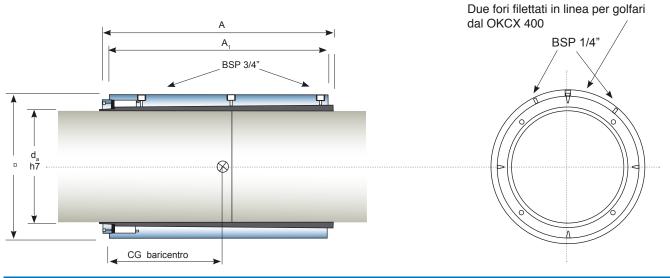
Maggior risparmio per le linee d'assi (CPP) con eliche a passo variabile

Il giunto per albero OKCX è concepito per ridurre la pressione esercitata sullo stesso, rendendo possibile evitare costosi manicotti di rinforzo su alberi cavi. Rispetto ai giunti tradizionali, il giunto OKCX può trasmettere una torsione maggiore così da consentire un albero con un profilo più sottile. Questa proprietà è utile al fine della riduzione del peso e dell'ingombro.

PRESTO RIPAGATI CON IL GIUNTO OKCX Nessun costo per i manicotti di rinforzo


- · Nessun costo di allestimento dei manicotti
- · Nessun costo di installazione dei manicotti
- · Nessun costo per la lavorazione delle sedi dei manicotti

OKCX 100 - 490 Giunti per alberi


Tipo (1)	d	D	A1	А	∆ (2)	CG	Peso	Momento d'inerzia	M _t max. (3)
	mm	mm	mm	mm	mm	mm	kg	kgm²	kNm
OKCX 100	100	185	369	357	0,11	185	51	0,3	33
OKCX 110	110	195	370	358	0,12	186	55	0,3	44
OKCX 120	120	205	373	360	0,14	187	59	0,4	56
OKCX 130	130	220	404	391	0,15	203	73	0,6	72
OKCX 140	140	230	412	393	0,17	203	79	0,7	89
OKCX 150	150	240	426	407	0,21	210	85	0,9	110
OKCX 160	160	250	438	418	0,23	216	92	1,0	133
OKCX 170	170	260	450	430	0,26	222	100	1,2	160
OKCX 180	180	270	462	441	0,28	227	107	1,4	189
OKCX 190	190	285	509	483	0,29	247	131	1,9	223
OKCX 200	200	300	522	500	0,31	257	150	2,4	260
OKCX 210	210	310	539	511	0,34	263	160	2,8	301
OKCX 220	220	320	552	523	0,37	269	170	3,2	346
OKCX 230	230	335	564	535	0,38	276	191	3,9	395
OKCX 240	240	345	587	557	0,41	287	206	4,5	448
OKCX 250	250	355	599	569	0,44	294	218	5,1	507
OKCX 260	260	365	634	602	0,47	310	238	6,0	570
OKCX 270	270	380	654	622	0,48	320	268	7,3	638
OKCX 280	280	390	667	634	0,51	326	282	8,1	712
OKCX 290	290	400	679	646	0,55	333	296	9,0	791
OKCX 300	300	425	701	665	0,51	341	364	12,3	875
OKCX 310	310	435	720	683	0,55	353	383	13,6	966
OKCX 320	320	445	764	726	0,57	375	419	15,7	1070
OKCX 330	330	460	775	737	0,59	381	456	18,2	1170
OKCX 340	340	470	788	749	0,62	387	475	19,9	1280
OKCX 350	350	480	801	761	0,66	393	495	21,8	1390
OKCX 360	360	495	822	782	0,67	404	543	25,4	1520
OKCX 370	370	505	835	794	0,71	410	564	27,6	1650
OKCX 380	380	515	857	816	0,73	422	593	30,3	1780
OKCX 390	390	530	869	827	0,75	428	641	34,6	1930
OKCX 400	400	540	893	850	0,80	438	675	38,1	2080
OKCX 410	410	550	933	889	0,84	461	720	42,3	2240
OKCX 420	420	565	944	900	0,85	467	773	47,8	2410
OKCX 430	430	575	967	922	0,88	478	809	52,1	2580
OKCX 440	440	585	990	944	0,92	489	845	56,5	2770
OKCX 450	450	600	1001	955	0,93	495	905	63,5	2960
OKCX 460	460	610	1015	968	0,98	502	935	68,1	3160
OKCX 470	470	620	1037	990	1,01	514	974	73,6	3370
OKCX 480	480	635	1051	1 001	1,03	518	1042	82,4	3590
OKCX 490	490	645	1074	1 023	1,07	529	1084	88,8	3820

I giunti per misure di albero intermedie sono designati, per esempio, OKCX 165
 Aumento del diametro esterno Δ dopo il montaggio

Per ottenere il momento torcente trasmissibile occorre applicare il fattore di servizio. Vedere pag 5 Note: la lunghezza disponibile su uno degli alberi per l'installazione deve essere A +75 mm

5KF OKCX 500 - 900 Giunti per alberi

Tipo (1)	d _a	D	A1	Α	Δ (2)	CG	Peso	Momento d'inerzia	M _t max. (3)
	mm	mm	mm	mm	mm	mm	kg	kgm²	kNm
OKCX 500	500	665	1083	1032	1,04	534	1195	103,2	4060
OKCX 510	510	680	1122	1064	1,04	551	1298	117,1	4300
OKCX 520	520	690	1144	1086	1,07	562	1347	125,5	4560
OKCX 530	530	700	1157	1098	1,12	568	1385	133,2	4830
OKCX 540	540	710	1179	1120	1,15	580	1436	142,5	5110
OKCX 550	550	725	1191	1131	1,17	585	1521	157,2	5400
OKCX 560	560	735	1213	1153	1,20	597	1575	167,8	5700
OKCX 570	570	750	1226	1165	1,22	604	1667	184,6	6010
OKCX 580	580	760	1248	1187	1,25	615	1724	196,6	6330
OKCX 590	590	770	1262	1200	1,30	622	1769	207,7	6660
OKCX 600	600	785	1283	1220	1,29	631	1886	229,7	7000
OKCX 610	610	795	1311	1242	1,33	643	1950	244,3	7360
OKCX 620	620	810	1322	1253	1,35	649	2056	266,9	7730
OKCX 630	630	820	1345	1275	1,39	660	2121	283,0	8110
OKCX 640	640	835	1388	1317	1,39	681	2288	315,9	8500
OKCX 650	650	845	1411	1339	1,42	693	2358	334,4	8900
OKCX 660	660	855	1418	1342	1,48	693	2398	349,0	9320
OKCX 670	670	870	1439	1363	1,48	704	2538	3817	9750
OKCX 680	680	880	1462	1385	1,52	716	2613	403,1	10200
OKCX 690	690	895	1481	1404	1,53	725	2758	439,4	10700
OKCX 700	700	905	1506	1428	1,58	738	2838	463,4	11200
OKCX 710	710	920	1512	1434	1,57	743	2960	498,8	11600
OKCX 720	720	935	1525	1446	1,59	750	3101	539,9	12100
OKCX 730	730	945	1548	1468	1,63	761	3188	567,2	12610
OKCX 740	740	960	1569	1489	1,64	772	3356	615,2	13200
OKCX 750	750	970	1583	1502	1,68	779	3425	642,4	13700
OKCX 760	760	985	1604	1523	1,69	790	3602	695,6	14300
OKCX 770	770	995	1617	1535	1,73	796	3671	725,1	14800
OKCX 780	780	1005	1640	1557	1,77	807	3768	760,8	15380
OKCX 790	790	1020	1651	1568	1,78	813	3929	816,0	15980
OKCX 800	800	1035	1672	1588	1,78	822	4128	881,5	16600
OKCX 810	810	1045	1722	1632	1,81	846	4293	936,4	17300
OKCX 820	820	1060	1733	1642	1,82	851	4470	1001,7	17900
OKCX 830	830	1070	1746	1655	1,86	858	4551	1041,3	18530
OKCX 840	840	1085	1767	1675	1,87	868	4765	1119,3	19210
OKCX 850	850	1095	1782	1688	1,92	874	4853	1163,4	19900
OKCX 860	860	1110	1814	1718	1,92	889	5109	1256,7	20700
OKCX 870	870	1120	1828	1731	1,96	896	5198	1304,3	21400
OKCX 880	880	1130	1842	1744	2,01	903	5289	1353,5	22100
OKCX 890	890	1145	1862	1764	2,02	913	5525	1449,4	22850
OKCX 900	900	1160	1874	1775	2,02	918	5743	1544,4	23630

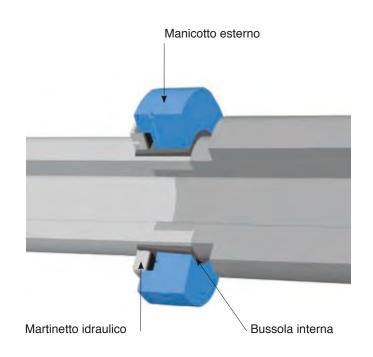
I giunti per misure di albero intermedie sono designati, per esempio, OKCX 525
 Aumento del diametro esterno Δ dopo il montaggio
 Per ottenere il momento torcente trasmissibile occorre applicare il fattore di servizio. Vedere pag 5 Note: la lunghezza disponibile su uno degli alberi per l'installazione deve essere A +75 mm

5KF Giunti serie OKCK

Veloce da montare

il giunto SKF serie OKCK è montato utilizzando il sistema di iniezione dell'olio.

Non necessitano rumorose e vibranti chiavi pneumatiche.


Il montaggio oppure lo smontaggio in fabbrica richiede meno di mezz'ora.

Lo stesso si può dire se il montaggio e lo smontaggio avvengono in opera.

Risparmi di denaro sulla linea di produzione

Test pratici hanno dimostrato che il giunto SKF - OKCK riduce di sei volte i tempi di montaggio rispetto ai giunti meccanici.

Inoltre il lavoro viene svolto da una sola persona.

Come funziona

Il giunto OKCK è costituito da una sottile bussola interna con foro cilindrico e superficie esterna conica, da uno spesso manicotto esterno con superficie interna conica in accoppiamento alla bussola interna ed infine da un martinetto idraulico integrato.

L'olio viene iniettato fra i due manicotti per ridurre l'attrito sulla superficie conica.

Il martinetto idraulico spinge il manicotto esterno sopra la bussola interna fino ad una posizione prestabilita generando un'elevata e controllata pressione sull'asse.

Attrezzature per montaggio e smontaggio

OKP 36

Per OKC - OKCX 100 ÷ 170 e OKCS 178 ÷ 360

- 1 Cassetta attrezzi 728245/3A
- 1 Iniettore 226400
- 1 Pompa manuale TMJL 50
- 1 Set chiavi esagonali
- 1 Ricambi per iniettore 226400

Peso: 19 kg

OKP 37

Per OKC - OKCX 180 ÷ 250 e OKF 100 ÷ 300

- 1 Cassetta attrezzi 728245/3A
- 2 Iniettori 226400
- 1 Pompa manuale TMJL 50
- 1 Tubo 227958A
- 1 Base di fissaggio 226402
- 1 Set chiavi esagonali
- 1 Ricambi per iniettore 226400

Peso: 28,1 kg

Anche il set OKP 38 può essere usato per questi giunti.

Questo set contiene una pompa pneumatica per velocizzare il montaggio.

OKP 38

Per OKC - OKCX 180 ÷ 490 e OKF 300 ÷ 700

- 1 Pompa ad aria compressa THAP 030/SET
- 1 Tubo di ritorno 729147A
- 2 Iniettori 226400
- 1 Set chiavi esagonali
- 1 Ricambi per iniettore 226400

Peso: 32,1 kg

OKP 38 S

Per OKC - OKCX 180 ÷ 490 e OKF 300 ÷ 700

- 1 Pompa ad aria compressa THAP 030/SET
- 1 Tubo di ritorno 729147A
- 1 Pompa ad aria compressa THAP 300E
- 1 Iniettore 226400
- 1 Set chiavi esagonali
- 1 Ricambi per iniettore 226400

Peso: 78,2 kg incluso il peso del bancale

Attrezzature per montaggio e smontaggio

OKP 39

Per OKC - OKCX 500 e oltre

- 1 Pompa ad aria compressa THAP 030/SET
- 1 Tubo di ritorno 729147A
- 3 Iniettori 226400
- 1 Set chiavi esagonali
- 1 Ricambi per iniettore 226400

Peso: 35,1 kg

Questo set è adatto per uso di bordo con smontaggi e montaggi poco frequenti.

Per cantieri ed officine sono raccomandati i set OKP40 e OKP 41 con pompa pneumatica.

OKP 40

Per OKC - OKCX 500 e oltre

- 1 Pompa ad aria compressa THAP 030/SET
- 1 Tubo di ritorno 729147A
- 1 Pompa ad aria compressa THAP 300E
- 2 Iniettori 226400
- 1 Set chiavi esagonali
- 1 Ricambi per iniettore 226400

Peso: 80,2 kg incluso il peso del bancale

Questo set e il set OKP 41 sono raccomandati per cantieri ed officine. La pompa pneumatica semplifica decisamente il lavoro.

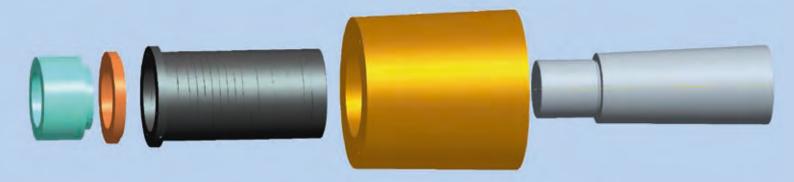
OKP 41

Per OKC - OKCX 500 e oltre

- 1 Pompa ad aria compressa THAP 030/SET
- 1 Tubo di ritorno 729147A
- 3 Pompa ad aria compressa THAP 300E
- 1 Set chiavi esagonali

Peso: 132,7 kg incluso il peso del bancale

Questo set è raccomandato per cantieri ed officine.


Olio

Per la pompa idraulica e gli iniettori dovrà essere usato un normale olio motore per autoveicoli con una viscosità di 300 mmq./s (300cSt) alla temperatura del giunto. La viscosità si ottiene con sufficiente precisione se l'olio viene scelto come segue:

Intervallo di temperatura		Viscosità
0 – 8°C	Olio motore	SAE 10 W
8 – 18 °C	Olio motore	SAE 20 W
18 − 27 °C	Olio motore	SAE 30 W
27 – 32 °C	Olio motore	SAE 40 W
32 – 38°C	Olio motore	SAE 50 W

OKOO - Bussola di calettamento per eliche a passo fisso

PRINCIPIO DI FUNZIONAMENTO

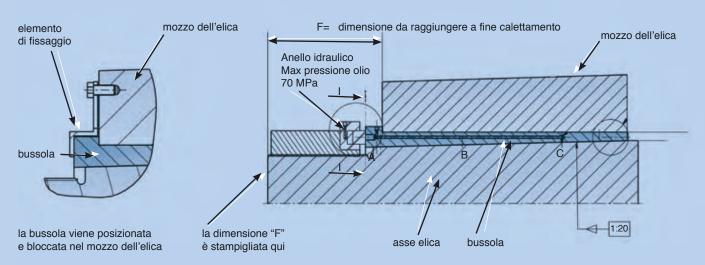
Il sistema si basa sul ben noto metodo SKF di iniezione dell'olio ed utilizza una bussola che è conica sul diametro interno e cilindrica sul diametro esterno.

Durante il montaggio dell'elica l'olio viene iniettato fra l'albero e la bussola per eliminarne l'attrito.

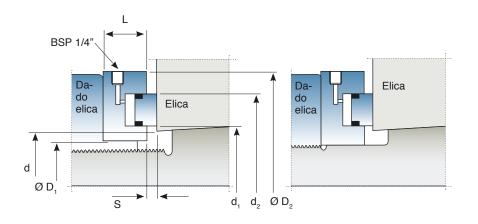
La bussola con il mozzo dell'elica viene quindi spinto sul cono dell'asse con l'ausilio di un anello idraulico.

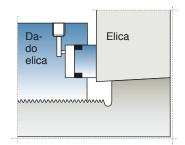
La bussola genera un accoppiamento con interferenza sull'asse ed attraverso la sua espansione un equivalente accoppiamento con interferenza con il mozzo dell'elica.

VANTAGGI COSTRUTTIVI


- Con questo sistema viene eliminato il tempo impiegato per il controllo con marcatura "blu
- di Prussia" del contatto fra il cono del mozzo elica e l'albero.
- Eseguendo un'appropriata misurazione del cono sull'albero e sull'interno della bussola, le società di classifica possono approvare l'accoppiamento semplicemente verificando il protocollo dimensionale.
- Il foro del mozzo dell'elica è cilindrico, quindi molto più facile da lavorare rispetto ad un foro conico.

VANTAGGI IN ESERCIZIO


Nel caso in cui l'elica colpisca una roccia e slitti, lo slittamento avverrà fra l'asse e la bussola.


Ciò significa che il cono sull'asse potrà essere rilavorato e la bussola sostituita con una nuova minorata sul diametro interno.

Se non si utilizzasse questo sistema, l'elica dovrebbe essere sostituita.

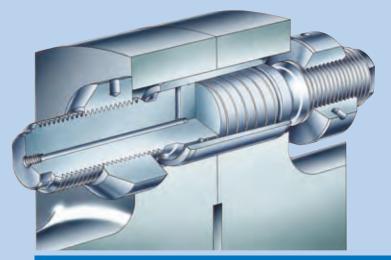
Dado idraulico con filetto integrato OKTH

Tipo	d	D1	d1	d2	D2	L	Smax.	Forza Max.	Peso
	mm	mm	mm	mm	mm	mm	mm	kN (a 70 MPa)	kg
OKTC 245	260 - 275	245	275	340	390	55	15	2090	31
OKTC 265	275 – 295	265	295	365	415	55	15	2400	35
OKTC 285	295 – 315	285	315	385	435	55	15	2730	37
OKTC 305	315 – 335	305	335	415	465	55	15	3175	42
OKTC 325	335 - 365	325	365	445	510	70	20	3555	66
OKTC 345	365 - 385	345	385	470	535	70	20	3955	72
OKTC 365	385 – 405	365	405	495	560	70	20	4375	77
OKTC 385	405 – 425	385	425	520	585	70	20	4820	84
OKTC 405	425 – 445	405	445	545	610	70	20	5400	90
OKTC 425	445 – 465	425	465	570	635	70	20	5890	96
OKTC 445	465 – 485	445	485	595	660	70	20	6400	103
OKTC 465	485 – 505	465	505	620	685	70	20	6940	110
OKTC 485	505 - 525	485	525	645	710	70	20	7490	116
OKTC 505	525 - 545	505	545	670	735	70	20	8220	123
OKTC 525	545 – 565	525	565	695	760	70	20	8820	130
OKTC 545	565 – 595	545	595	725	805	90	25	9440	195
OKTC 565	595 – 615	565	615	750	830	90	25	10090	205
OKTC 585	615 – 635	585	635	775	855	90	25	10760	216
OKTC 605	635 – 655	605	655	800	880	90	25	11620	226
OKTC 625	655 – 675	625	675	825	905	90	25	12330	238
OKTC 645	675 – 695	645	695	860	940	90	25	13830	260
OKTC 670	695 - 720	670	720	885	965	90	25	14610	267
OKTC 690	720 - 740	690	740	915	995	90	25	15930	285
OKTC 720	740 - 770	720	770	955	1050	100	30	17290	360
OKTC 750	770 – 800	750	800	985	1080	100	30	18160	372
OKTC 770	800 - 820	770	820	1010	1105	100	30	19050	387
OKTC 790	820 - 840	790	840	1035	1130	100	30	20200	402

Questo elenco costituisce una guida; se la ghiera necessaria non compare nell'elenco, preghiamo di contattare i nostri rappresentanti locali e noi progetteremo la ghiera più idonea sulla base delle seguenti informazioni

- a) Dimensioni del mozzo dell'elica
- Massima potenza in kW b)
- c) Massima velocità in giri/minuto
- Fattore di sicurezza richiesto
- Modulo di elasticità del materiale del mozzo e dell'albero in N/mm²
- Coefficiente di dilatazione termica del materiale del mozzo e dell'albero Carico di snervamento del materiale del mozzo e dell'albero in N/mm²

Se la forza necessaria per il calettamento e la relativa corsa sono calcolate dal cliente, occorre conoscere oltre a queste, anche il tipo di filettatura prevista sull'albero porta elica ed il minore dei diametri interni del mozzo.


Per l'iniezione d'olio sia nella ghiera che nel mozzo, si consiglia la pompa OKP728619. Per misure di ghiere oltre OKTC505 si raccomanda la pompa pneumatica THAP 150.

Nel momento in cui l'incidenza del costo di manutenzione, nell'industria pesante, diventa un fattore critico dell'economia operativa, il principio "risparmia-tempo" del sistema Supergrip assume un'importanza notevole per il modo con cui si possono abbattere tali costi.

Quando si collegano i giunti con i bulloni Supergrip, non c'è incertezza circa il tempo di fermo macchina per la loro successiva rimozione. Nessuna preoccupazione, inoltre, circa il fatto che i bulloni si siano bloccati o grippati nei rispettivi fori. Potete essere certi che una volta che la pressione per l'espansione sarà rilasciata, ciascun bullone scivolerà senza alcun problema fuori dalla sua sede.

LA NUOVA TECNOLOGIA FA FRONTE AD UNA VECCHIA SFIDA

Lottando contro i bulloni tradizionali

Prima dell'introduzione dei bulloni Supergrip, il montaggio e lo smontaggio di grossi giunti flangiati collegati con i bulloni convenzionali erano lavori difficoltosi ed economicamente poco convenienti. I bulloni, per essere inseriti nei fori, dovevano essere di buona finitura superficiale, avere gli alloggiamenti alesati per essere poi inseriti a colpi di mazza.

Una tecnologia decisamente antiquata.

Anche i più qualificati ed esperti montatori ottenevano con difficoltà un accoppiamento perfetto: rimaneva sempre un piccolo gioco tra foro e bullone che, dopo un certo periodo di servizio, aumentava causando deformazioni nel bullone, nella flangia e producendo vibrazioni nell'insieme dell'accoppiamento.

Indipendentemente dalla applicazione, almeno una volta dovrà capitare che si debba smontare il giunto rimuovendo ciascun bullone: il lavoro sarà complicato dal fatto che le suddette deformazioni avranno presumibilmente bloccato i bulloni nelle loro sedi della flangia.

5KF Bulloni Supergrip

I Supergrip

In un giunto collegato con bulloni Supergrip, la torsione viene trasmessa in due modi: dalla forza di taglio del bullone dilatato nel foro e dalla forza di attrito tra le flange, dovuta al precarico sul bullone.

Entrambi gli effetti sono misurabili e controllabili. Progettati in particolare per impieghi dove intervengono alti momenti torcenti come trasmissioni, assi timonerie, torbogeneratori, cilindri laminatoi e simili, i bulloni Supergrip offrono vantaggi considerevoli:

- Semplificano le lavorazioni di utensile sui fori e non occorre nessuna rettifica dei bulloni: questo significa eliminare le operazioni di finitura superficiale.
 - I bulloni Supergrip sono progettati per essere montati o rimossi con un accoppiamento iniziale con gioco.
 - Non c'è pericolo di bloccaggi o grippaggi.

- Facilitano l'istallazione e la rimozione.
 Paragonati ai sistemi convenzionali, i bulloni Supergrip permettono di ridurre i tempi per il montaggio e lo smontaggio.
 - Dilatazione e precarico predeterminati.
 Lo slittamento del giunto viene eliminato a
 causa del potente accoppiamento radiale e
 dell'elevato precarico assiale.
- Allineamento semplificato dell'albero.
 Una espansione graduale e controllata del bullone garantisce che la concentricità fra le flange venga ripristinata velocemente.
- Possibilità di riutilizzo.

I bulloni Supergrip possono essere tranquillamente intercambiati ed usati ripetitivamente:

non c'è alcun bisogno di set di ricambio.

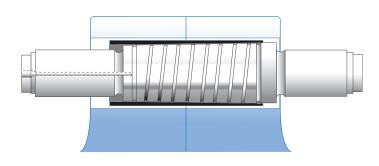
Risparmi aggiuntivi nella fase di progettazione

Il fatto che i bulloni lavorino effettivamente a taglio e che trasmettano anche la forza di attrito tra le flange, fa sì che il numero e/o il diametro dei bulloni stessi, nel giunto, possa essere ridotto, conservando ancora un buon margine di sicurezza. Riducendo il diametro del bullone si può di conseguenza ridurre il diametro della flangia, ottenendo così giunzioni più compatte, meno costose e meno ingombranti.

Utensili

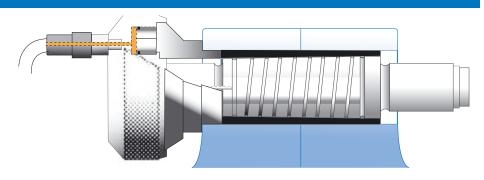
Insieme ai bulloni viene fornito un semplice set di utensili che comprende un martinetto idraulico con accessori, una pompa manuale o ad aria compressa con un tubo di raccordo flessibile ed un giunto ad innesto rapido.

Gli utensili funzionano manualmente e sono facilmente trasportabili.



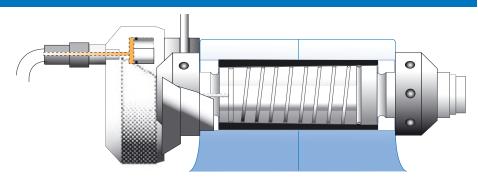
5KF Montaggio dei bulloni Supergrip

1



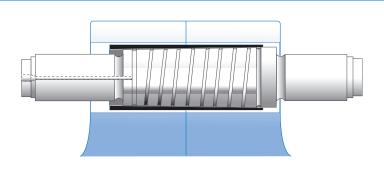
Poichè inizialmente il diametro del bullone è più piccolo del foro, esso viene facilmente inserito a mano

2



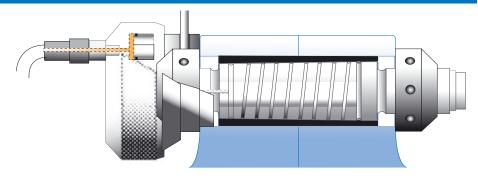
Il gambo conico viene tirato nel manicotto con l'ausilio del martinetto idraulico, creando un accoppiamento con interferenza radiale controllata.

3

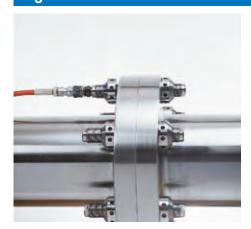


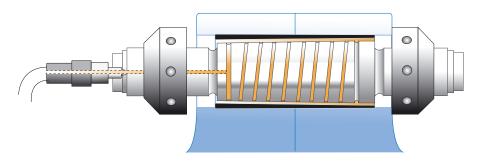
Dopo aver montato i dadi, i bulloni vengono tensionati idraulicamente con un elevato precario assiale.

4


Dopo aver disinnestato pompa e martinetto, il bullone è pronto per trasmettere un elevata torsione.

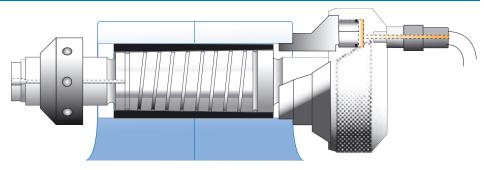
5KF Rimozione dei bulloni Supergrip


5



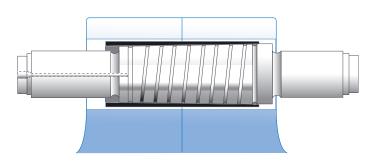
Il martinetto viene allacciato e messo in pressione: il dado può essere così rilasciato.

6



La pompa idraulica viene poi collegata al centro del bullone. L'olio è quindi iniettato per far staccare il bullone dal manicotto. Il bullone scivola fuori dal foro conico del manicotto che riguadagna immediatamente il suo diametro originale.

7



In alternativa il bullone può essere spinto fuori dal manicotto con il martinetto montato

8

Dopo aver svitato i dadi, il bullone e il manicotto possono essere facilmente estratti a mano.

5KF OKBC, OKBS-OKBT, OKBD

OKBC

I bulloni Supergrip compatti sono stati realizzati con estremità a scomparsa per risparmiare spazio.

Le estremità a scomparsa sono normalmente una necessità nei collegamenti tra i giunti delle turbine a vapore, per ridurre i livelli di rumorosità e di ventilazione dovuti alla alta velocità di rotazione.

I bulloni Supergrip possono essere utilizzati con flange dritte o con battuta all'estremità dei fori.

Quando è necessaria una tolleranza precisa del peso del giunto per il bilanciamento dell'asse, i bulloni possono essere forniti secondo le specifiche di peso richieste.

OKBS - OKBT

Quando si montano bulloni Supergrip in accoppiamenti con un numero ed un diametro di bulloni predeterminato, quali flange per alberi a gomito, per alberi primari dei cambi, oppure quando si fa manutenzione a giunti già in opera, il numero dei bulloni può essere ridotto garantendo comunque un accoppiamento rigido per la trasmissione del momento torcente.

Comunque, onde garantire una distribuzione simmetrica del carico, il numero minimo di bulloni in un giunto non dovrebbe mai essere inferiore a sei.

Per far fronte a questa richiesta abbiamo sviluppato un sistema combinato nel quale i bulloni Supergrip vengono montati insieme a bulloni di semplice tiraggio.

Questi bulloni sono posti in tensione e precaricati allo stesso modo e con lo stesso martinetto dei bulloni Supergrip.

Tale combinazione è particolarmente vantaggiosa quando la spinta assiale e la sollecitazione a flessione sono elevate rispetto alla torsione.

Il bullone di fissaggio a tirante richiede una lavorazione ancora minore per cui il costo totale per giunto viene ulteriormente ridotto.

OKBD

Per collegare una flangia ad un mozzo con fori ciechi, abbiamo sviluppato uno speciale sistema Supergrip, caratterizzato da una spina di centratura, combinata con bulloni di fissaggio montati idraulicamente.

Le applicazioni comprendono le costruzioni di rotori elettrici, eliche montate a flangia, pale per eliche imbullonate, giunti per alternatori.

La spina ad espansione può essere utilizzata anche come riferimento della fase in organi rotanti o come chiusura per fori di tubazioni di drenaggio di recipienti in pressione.

La spina ad espansione è anche una eccellente soluzione per chiudere i fori delle tubazioni impiegate nei reattori nucleari. Le spine ad espansione Supergrip sono già state utilizzate in simili applicazioni quando i programmi di manutenzione prevedevano che i tubi collegati al reattore dovessero essere rimossi.

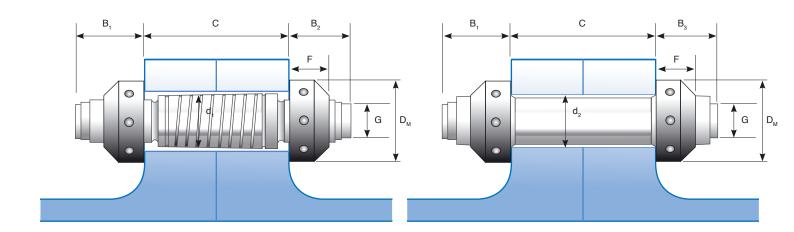
Le spine Supergrip sono state usate per chiudere i fori dall'interno del reattore, in abbiente attivo, ad una profondità di nove metri L'istallazione risultò semplice ed il serraggio sicuro.

SKF

Raccomandazioni per la progettazione ed il dimensionamento

Specifica materiali

Gambo vite e dadi


Grado SS 2541 equivalente a B.S. 817M40, DIN 34CrNiMo6 (1.6582) SAE 4337

Proprietà meccaniche

ReL= 700 N/mm² $A_5 = min. 12\%$

Tabella conversione

- 1 N= 0.102kp = 0,225 lb
- 1 Nm= 0.102kpm = 0.783 lb x f t
- 1 MPa = $10.2 \text{ kp/cm}^2 = 0.145 \times 10^3 \text{ lb/in}^2$
- 1 N/mm 2 = 0.102 kp/mm 2 = 0.145 x 10 3 lb/in 2
- 1 m = 39,37 in
- 1 in = 25,4 mm
- 0° C = 273,15 K = 32° F

Dim	nension	ni 💮												
Bulloni Su	pergrip									Bulloni di	i fissagg	gio	Utensile	•
Diametro nominale foro	Filetto	Spessore minimo flange accoppiate	Lunghezza filettata estremità lunga bullone	Lunghezza filettata estremità corta bullone	Spessore dado	Diametro dado	Peso Totale bullone	Incremento per ogni 10 mm > di C min	Diametro nominale del foro	Lunghezza filettata estremità corta bullone	totale	Incremento per ogni 10 mm > C mm	Ø esterno martinetto idraulico	Spazio min. per
d ₁ mm	G	c _{min} mm	B ₁ mm	${\bf B_2}$ mm	F mm	D _M mm	Kg	Kg	d ₂ +0,1 mm	B ₃ mm	kg		$\mathbf{D}_{\mathbf{D}}$ mm	H ₁ mm
40 - (44)	M33x3.5	126	64	51	27	58	2,5 - 2,7	0.05	34	35	1.9	0.05	88	142
44 - (49)	M36x4	140	70	56	29	63	3.3 - 3.6	0.06	37	37	2.5	0.06	102	149
49 - (51)	M39x4	143	78	62	31	67	4.1 - 4.2	0.07	40	41	3.5	0.07	102	157
51 - (55)	M42x4.5	155	83	66	34	72	5.0- 5.3	0.08	43	44	4.3	0.08	118	157
55 - (58)	M45x4.5	160	87	69	36	76	6.0 - 6.2	0.09	46	46	5.2	0.09	118	161
58 - (62)	M48x5	172	91	72	39	81	7.3 - 7.6	0.10	49	49	6.3	0.10	136	177
62 - (68)	M52x5	185	99	78	42	89	9.2 - 9.8	0.13	53	52	8.0	0.13	136	185
68 - (73)	M56x5.5	199	106	83	45	96	11.5 - 12.2	0.14	57	55	10.0	0.14	156	198
73 - (78)	M60x5.5	209	114	90	48	102	14.1 - 14.8	0.17	61	60	12.2	0.17	156	206
78 - (83)	M64x6	222	122	96	52	109	17.2 - 18.1	0.19	65	64	14.9	0.19	178	231
83 - (88)	M68x6	233	128	101	55	116	20.4 - 21.3	0.22	69	67	17.7	0.22	178	237
88 - (93)	M72x6	243	134	105	58	122	24.0 - 25.0	0.25	73	70	21.0	0.25	198	245
93 -(98)	M76x6	254	140	110	61	130	28.3 - 29.5	0.28	77	73	24.5	0.28	198	251
98 - (104)	M80x6	267	146	114	64	137	33.0 - 34.6	0.32	81	76	28.5	0.32	236	282
104 - (112)	M85x6	284	154	120	68	147	39.9 - 42.3	0.36	86	80	34.3	0.36	236	290
112 - (118)	M90x6	297	162	126	72	155	47.5 - 49.5	0.41	91	84	40.6	0.41	268	310
118 - (124)	M95x6	309	170	132	76	164	55.6 - 57.9	0.46	96	88	47.4	0.46	268	318
124 - (130)	M100x6	321	178	138	80	172	64.2 - 66.6	0.52	101	92	55.1	0.52	296	334
130 - (138)	M105x6	339	186	144	84	182	74.6 - 78.3	0.58	106	96	64.0	0.58	296	342

SKF

Raccomandazioni per la progettazione ed il dimensionamento

Valutazioni

Lo scopo, nella progettazione di un giunto a flangia, è quello di ottimizzare il numero e la misura sia dei bulloni che delle flangie stesse.

Il numero dei bulloni non dovrebbe mai essere inferiore a sei.

Il bullone Supergrip è stato progettato per resistere ad una sollecitazione di taglio massima di 280 N/mm² ed una sollecitazione assiale massima di 350 N/mm².

Spazio minimo per allacciamento martinetto

	Definizioni			Dimensioni	generiche
T_{N}	Nm	Momento torcente nominale	E	mm	Diametro interasse fori
T_{D}	Nm	Momento torcente di progetto	d ₁	mm	Diametro nominale foro per bulloni Supergrip
T_s	Nm	Momento torcente trasmesso dai bulloni	d_2	mm	Diametro nominale foro per bulloni di fissaggio
		Supergrip	d_3	mm	Diametro albero
$T_{\scriptscriptstyle T}$	Nm	Momento torcente trasmesso dai bulloni di	G	mm	Filetto bulloni
		fissaggio	D_1	mm	Diametro esterno flangia
n,		Numero di bulloni Supergrip	D_{D}	mm	Diametro esterno martinetto idraulico (ingombro)
n ₂		Numero di bulloni di fissaggio	B ₁	mm	Lunghezza filettata estremità lunga bullone
S		Fattore d'urto			Supergrip
K,	N	Forza di taglio massima	B ₂	mm	Lunghezza filettata estremità corta bullone
K_2	N	Forza assiale sui bulloni Supergrip (da tab.1)			Supergrip
K_3	N	Forza assiale sui bulloni di fissaggio (da tab.1)	B ₃	mm	Lunghezza filettata estremità bullone di fissaggio
Α		Fattore relativo al materiale della flangia (vedi tab.)	C mir	n mm	Spessore minimo di entrambe le flange
b ₁		Fattore di precarico residuo per bulloni			accoppiate
		Supergrip=0,7	D_{M}	mm	Diametro dado
b_2		Fattore di precarico residuo per bulloni di	F	mm	Spessore dado
		fissaggio=0,8	R_{min}	mm	Raggio minimo per l'utilizzo di attrezzatura standard

Valore del momento torcente

Il valore del momento torcente viene determinato in base alla relazione:

 $T_D = T_N \cdot S (Nm)$

[11]

Dove il fattore d'urto può essere scelto in base alla seguente tabella:

Fattore d'urto S

Tipo di propulsione	Tipo di carico sulla macchina cond	dotta	
	Carico uniforme Pompe centrifughe, ventole, convogliatori leggeri, turbo compressori	Carico con urti limitati Compressori a pistoni, piccole pompe a pistoni, macchine utensili da taglio, macchine per imballaggi, macchine per la lavorazione del legno.	Carico con urti molto forti Presse, trafilatrici, piallatrici, grossi compressori a pistoni.
	Gruppo 1	Gruppo 2	Gruppo 3
Motore elettrico, turbina	2,0 - 2,25	2,25 - 2,5	2,5 - 2,75
Motore a pistoni a cilindri multipli	2,25 - 2,5	2,5 - 2,75	2,75 - 3,0
Motore a pistoni	2,75 - 3,0	3,0 - 3,25	3,25 - 4,0

Quando il bullone viene utilizzato per applicazioni marine, il fattore d'urto deve essere approvato dall'ente di classificazione preposto.

Raccomandazioni per la progettazione ed il dimensionamento

Numero dei bulloni Supergrip

Cominciamo col presumere una misura di bullone, quindi a determinare il diametro interasse fori corrispondente E.

$$E = d_3 + D_D + 10$$
 (mm) [2]

Si calcola poi il valore della max forza di taglio per bullone, per la misura di bullone scelta:

$$K_1 = 280 \cdot \frac{\mathbf{n} \cdot \mathbf{d}^{2}}{4} \cdot \mathbf{A} \quad (N)$$
 [3]

Il numero di Bulloni Supergrip viene quindi determinato da:

$$n_1 = \frac{T_0 \cdot 2}{E(K_1 + K_2 \cdot b_1 \cdot 0, 15)} \cdot 10^3$$
 [4]

Se il numero di bulloni Supergrip risulta inferiore a 6, si sceglie una misura di bullone più piccola e si ripete il calcolo.

Diametro esterno flangia

Il diametro esterno della flangia viene determinato da:

$$D_1 = E + 1.6 \cdot d_1$$
 (mm) [5]

Sistema combinato

Nel caso venga utilizzato il sistema combinato Supergrip, per esempio in caso di modifiche, il numero di bulloni Supergrip e dei bulloni di fissaggio vengono scelti come segue.

Momento torcente determinato in base alla formula. [1]

Si sceglie una misura di bullone Supergrip e si determina il diametro interasse a fori in base alla formula. [2]

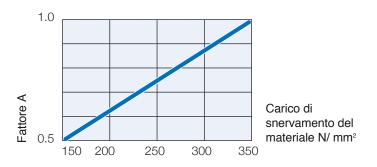
Il numero dei bulloni di fissaggio dovrebbe essere multiplo del numero dei bulloni Supergrip.

Si sceglie un appropriato numero di bulloni Supergrip, n1, non inferiore a tre.

Si calcola la torsione trasmessa dai bulloni Supergrip secondo la:

$$T_s = n_1 - \frac{E}{2} = 10^{-3} [K_1 + K_2 \cdot b_1 \cdot 0,15]$$
 (Nm)

Si determina la torsione necessaria che deve essere tramessa dai bulloni di fissaggio in base alla:


$$T_{T} = T_{D} - T_{S} \tag{Nm}$$

Il numero dei bulloni di fissaggio ne viene quindi calcolato da:

$$n_2 = \frac{T_7 \cdot 2}{K_7 \cdot b_7 \cdot E \cdot 0,15)} \cdot 10^3$$
 [8]

Fattore A - Materiale della flangia

Considerando lo sforzo sulla parte a contatto delle flange, quando il giunto è in servizio, il materiale delle flange deve essere scelto attentamente.

T	abella 1				
Ø bull oltre	one (mm) a	Filetto	K2 (kN)	K3 (kN)	D∘ mm
40	44	M33	302	388	88
44	49	M36	352	453	102
49	51	M39	427	549	102
51	55	M42	488	628	118
55	58	M45	573	737	118
58	62	M48	647	831	136
62	68	M52	779	1001	136
68	73	M56	898	1154	156
73	78	M60	1053	1353	156
78	83	M64	1194	1536	178
83	88	M68	1372	1764	178
88	93	M72	1562	2008	198
93	98	M76	1764	2268	198
98	104	M80	1978	2544	236
104	112	M85	2264	2910	236
112	118	M90	2569	3303	268
118	124	M95	2893	3719	268
124	130	M100	3236	4160	296
130	138	M105	3599	4627	296

SKF

Attrezzatura di allineamento Supergrip

Costituito da pochi ed essenziali elementi, il set di attrezzi per l'allineamento Supergrip è semplice e sorprendentemente efficace per il suo compito.

Corregge i disallineamenti angolari delle flange e rende realizzabile un contatto radiale senza dubbio perfetto dei bulloni nei fori con un significativo risparmio di tempo.

Offre una soluzione elegante per il perfetto allineamento. Non si rende necessaria forza bruta.

I manicotti ed i bulloni di allineamento vengono inseriti (e tolti) a mano.

La grande espansione dei manicotti di allineamento, attraverso una pressione idraulica che agisce sul bullone di espansione, crea una forza di compressione ottenendo un allineamento radiale ultra-preciso fra i fori dei bulloni del giunto.

Risparmio di tempo

L'attrezzatura di allineamento lavora sulla stessa base tecnica del bullone Supergrip.

Questo permette di allineare velocemente e facilmente usando la pressione idraulica invece di avvitare una massa pesante a mano.

Composizione del Set di allineamento

Q.tà	Composizione
4	Bulloni
4	Bussole di espansione
8	Dadi con Flangia
2	Collari distanziali
2	Collari di montaggio
2	Collari per lo smontaggio
1	Mandrino

Come funziona

- L'allineamento assiale è stato realizzato e le due flange sono avvicinate
- Il disallineamento angolare viene grossolanamente ridotto finchè non superi 0,4 mm. (0,02")
- Due bulloni di allineamento vengono inseriti in due fori diametralmente opposti.
- Due bulloni senza bussola (uso tirante) vengono inseriti in altri due fori diametralmente opposti.
- I tensionatori vengono avvitati sui bulloni tiranti; essi vengono usati per serrare e mantenere in contatto metallico le due flange del giunto.
- I tensionatori vengono quindi istallati sui bulloni di allineamento perespanderliconelevataforzaradialeportandoleflangein perfetto allineamento angolare.
- Tutti i quattro bulloni sono tensionati e mantengono il giunto in posizione corretta.
- Si possono ora installare i Bulloni Supergrip, dopodiché i bulloni di allineamento possono essere rimossi. Il giunto rimane perfettamente allineato fino al successivo smontaggio.

5KF COLD TIGHT

Utilizzando il sistema "cold tight" il rischio di incidenti è ridotto drasticamente e la sicurezza del personale aumenta dal momento che non occorre calore per stringere i bulloni.

Offre anche un modo più semplice di pianificare i tempi di fermo in modo più efficiente.

Un metodo veloce ed efficace, i dadi sono serrati a mano ed il tensionatore dei bulloni stessi chiude i dadi quando la pressione dell'olio è rilasciata. La stessa procedura va seguita al contrario per la rimozione dei bulloni.

Ogni bullone "cold tight" è bloccato individualmente o insieme a gruppo, usando la pressione dell'olio.

Al contrario delle tecniche tradizionali è semplice stabilire la pressione esatta necessaria per ottenere il carico richiesto e non si deve aspettare che i bulloni raffreddino prima di poterne verificare la tenuta.

I problemi tradizionali quali il rischio di usura sono evitati dal momento che i dadi sono bloccati e sbloccati senza carico.

Ogni bullone "cold tight" è realizzato su specifica del cliente e la forma è estremamente compatta , il che semplifica il processo di montaggio e smontaggio.

La sua tensionatura idraulica lo rende altresì considerevolmente più veloce e preciso nella messa in opera fin dalla prima volta.

Risparmio di tempo

Riduce il fermo macchina di alcuni giorni dal momento che non servono metodi antiquati come il riscaldamento nè pesanti attrezzature.

Non è necessario il calore per stringere i bulloni né pesanti chiavi e martelli per bloccare e sbloccare i dadi.

Non serve attendere il raffreddamento prima di poter verificare la tenuta sul bullone.

Tabella di comparazione con i sistemi tradizionali

Un raffronto di tempo è stato fatto fra il servaggio a caldo dei bulloni e la tecnologia SKF "cold tight".

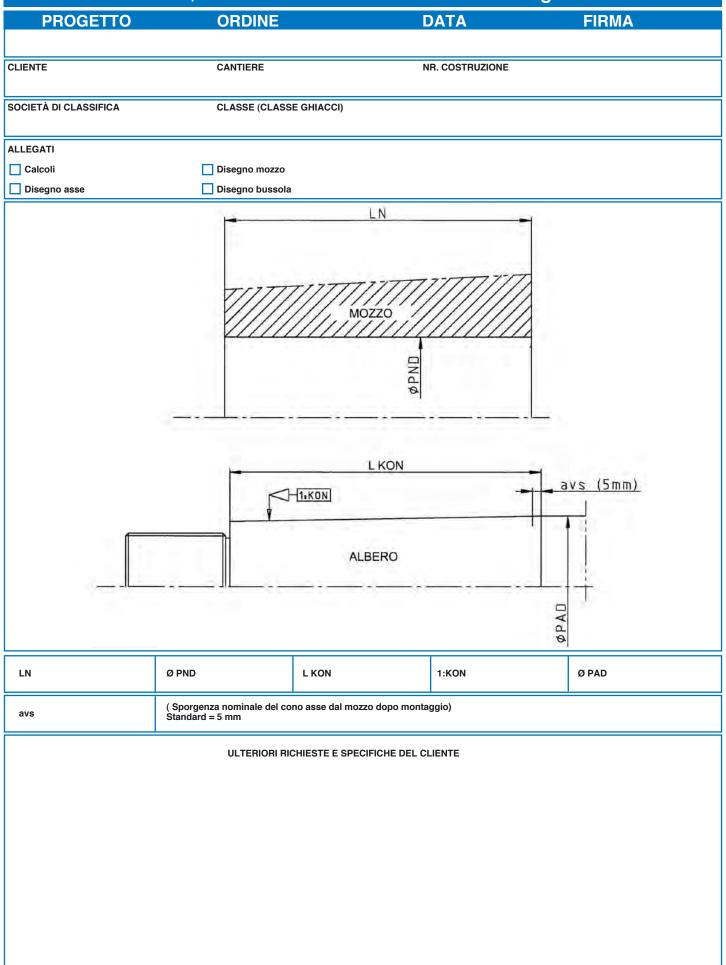
Lo studio è stato realizzato sul cilindro interno ed esterno di una singola turbina HP con 72 bulloni totali di diametro di 100 e 150 mm.

Il risultato è sorprendente. Più di 100 ore di fermo macchina in meno.

Operazione	Tempo rio	hiesto - ore
	bulloni a caldo	SKF Cold Tight
Rilascio bullone	12	6
Tensionamento e rilascio bulloni	i 92	36
nella chiusura provvisoria		
per verifica piani		
Bloccaggio finale	72	30
Totale	176	72

5KF OKC - check list

PROGETTO	ORDINE	DATA	FIRMA
CLIENTE	CANTIERE	NR. COSTRUZIONE	
SOCIETÀ DI CLASSIFICA	CLASSE (CLASSE GHIACCI)	TIPO DI TRASMISSIO	NE
	,	Con riduttore	Presa diretta
		☐ Diesel	☐ Turbina ☐ Elettrica
POSIZIONE DEL GIUNTO		VIBRAZIONI TORSIO	NALI
☐ Fra motore e riduttore	Entrobordo	MT _{torsion} =	
Fra riduttore ed elica	Fuoribordo		
POTENZA	NR. GIRI ASSE	FORZA ASSIALE	
CARICO SNERVAMENTO MATE	FRIALE ASSE	CARICO DI SNERVAN	MENTO MANICOTTI DI RINFORZO
O _s =	THALE ASSE	\mathbf{O}_{s} =	MENTO MANIOOTTI DITIINI OTIZO
DA	L1 LUNGHEZZA DISPONIBILE SULL'ASSE	B L2 LUNGHEZZA DISPONIB	ILE SULL'ASSE
DA .	JB		
В	L1	L2	
	ULTERIORI RICHIESTE E SPEC	CIFICHE DEL CLIENTE	


5KF OKF - check list

PROGETTO	ORDINE		DATA	FIRMA
CLIENTE	CANTIERE		NR. COSTRUZIONE	
SOCIETÀ DI CLASSIFICA	CLASSE (CLASSE GHIAC		TIPO DI TRASMISSIONE Con riduttore Pre Diesel Tui	esa diretta
POSIZIONE DEL GIUNTO Fra motore e riduttore	☐ Entrobordo		VIBRAZIONI TORSIONALI MT TORSION	
Fra riduttore ed elica	Fuoribordo		TORSION	
POTENZA	NR. GIRI ASSE		FORZA ASSIALE	
CARICO SNERVAMENTO MATER \mathbf{O}_{S} =	IALE ASSE		CARICO DI SNERVAMENTO MAI \mathbf{O}_{S} =	NICOTTI DI RINFORZO
TONGHE OF THE PROPERTY OF THE	ZZA DISPONIBILE SULL'ASSE	\$0\$ \$PED \$D1	CONFIGURAZIONE FORI (allegare schizzo se la dispu- Lavorazione Ø DH Semilavorati Misura finale	NELLA FLANGIA posizione è differente) Tolleranza Quantità
DA	DB DC		DS	PCD
D1	B BS (±))	R	L
	ULTERIORI RICHIE	STE E SPECIFICHE D	DEL CLIENTE	

5KF OKOO - check list

5KF OKTC - check list

CLIENTE CANTIERE NR. COSTRUZIONE SOCIETÀ DI CLASSIFICA CLASSE (CLASSE GHIACCI) TIPO DI TRASMISSIONE Con riduttore PROPRIETÀ MECCANICHE ASSE E= Re= V'= E= Re= V'= POTENZA GIRI P= RIPIN= F= MT T			ORDINE	DATA	FIF	RMA
OCIETÀ DI CLASSIFICA CLASSE (CLASSE GHIACCI) TIPO DI TRASMISSIONE Con riduttore Presa diretta PROPRIETÀ MECCANICHE LASE E= Re= V'= OTENZA GIRI SPINTA ASSIALE PROPIE F _a = MT			CANTIERS	ND COOPERIE		
ROPRIETÀ MECCANICHE ASSE E Res	OCIETÀ DI CLASSIFIO		CANTIERE	NR. COSTRUZION	E	
PROPRIETÀ MECCANICHE ELICA E= Re= V°= E= Re= V°= DIENZA GIRI SPINTA ASSIALE VIBRAZIONI TORSIONALI P= Rrpm= F= MT DIENZA GIRI SPINTA ASSIALE VIBRAZIONI TORSIONALI DIENZA GIRI SPINTA ASSIALE VI		CA	CLASSE (CLASSE GHIACCI)	TIPO DI TRASMIS	SIONE	
E= Re= V*= E= Re= V*= DTENZA GIRI SPINTA ASSIALE VIBRAZIONI TORSIONALI P= Rrpm= F _a = MT *** D d dg Corsa *** Corsa ** Corsa *** Corsa ** Corsa *** Corsa ** Corsa *** Corsa ** Corsa **				Con riduttore	Presa diret	ta
De de de de Corsa necessaria se messaria necessaria nec	ROPRIETÀ MECCANI	CHE ASSE		PROPRIETÀ MEC	CANICHE ELICA	
P= Rrpm= F_= MT= D d dg Corsa range eccessaria s (mm) D D2 L Porza rangessaria ra						l/°=
D d dg Corsa recessaria S (mm)					SIONALI	
D d dg necessaria S (mm) Forza necessaria	P=	Hrpm=	F _a =	MI TORSIONAL		
D d dg necessaria S (mm) D1 D2 L pecessaria		\$\times \bigs_1 \times \bigs_2 \bigs_1 \times \bigs_2 \bigs_1 \bigs_2			Pø	
D1 D2 L necessaria	D	d		dg	necessaria	
		D	2	L	necessaria	
ULTERIORI RICHIESTE E SPECIFICHE DEL CLIENTE	D1			<u> </u>		
CETERIORI MONEOTE E OI ESITIONE SEE CELETTE	D1		ULTERIORI RICHIESTE	E SPECIFICHE DEL CLIENTE		

5KF OKBS - check list

PROGETTO	ORDINE	DATA	FIRMA		
CLIENTE	CANTIERE	NR. COSTRUZIONE	NR. COSTRUZIONE		
SOCIETÀ DI CLASSIFICA	CLASSE (CLASSE GHIACCI)	TIPO DI TRASMISSIOI	TIPO DI TRASMISSIONE		
<u> </u>		☐ Con riduttore			
		Diesel	☐ Turbina		
POSIZIONE DEL GIUNTO A FLANGIA		VIBRAZIONI TORSION	VIBRAZIONI TORSIONALI		
Fra motore e riduttore	■ Entrobordo	MT _{torsion} =	MT _{TORSION} =		
Fra riduttore ed elica	☐ Fuoribordo				
PROPRIETÀ MECCANICHE ASSE \mathbf{O}_{S} =	POTENZA ALL'ASSE	NR. GIRI ASSE	CARICO ASSIALE		
- H	H1 FT1	S FT2	H2		
	1///				
	11/		- 1		
E			2 DH		
170			072		
	B				
吾	1 2////		\$\$ €		
	W/////		E E		
	DAI		DAZ		
	<i>=</i> '		701		
FT1	FT2	DY1	DY2		
DH1	DH2	DA1	DA2		
			1		
H1	H2	R1	R2		
s	PCD	DH	MAGG. Ø BUSSOLA		
ULTERIORI RICHIESTE E SPECIFICHE DEL CLIENTE					

5KF OKBC - check list

spedire via fax +39 02.24104774 o via mail 250@gandini.it

PROGETT	O ORDINE	DATA	FIRMA			
CLIENTE		CENTRALE				
UNITÀ		POSIZIONE DEL GIUNTO				
NR. BULLONI		MAGGIORAZIONE Ø BUSSOLA				
	H1	FT1 FT2	H2			
	RAI A1	B1 B2 B2	A2 ab2			
1						
	93					
T		+	01.2 01.2			
PCD	RI		82			
DY1			RS2			
	- W.		B1145			
	DA3 DA	A FITTED L.	DA4 DA6			
	H3		H4 0			
DH	R2	R3	R4			
PCD	FT1	FT2	s			
A FITTED L	RA1	RA2	DA1			
NR. OKBC	DA2	DA3	DA4			
NR. OKBT	Alt. C1	Alt C2	B1			
B2	DR1	DR2	DY1			
DY2	H1	H2	нз			
H4	A1	A2	RS1			
RS2	DC1	DC2	R1			
DA5	DA6					

ULTERIORI RICHIESTE E SPECIFICHE DEL CLIENTE

CONDIZIONI GENERALI DI VENDITA GANDINI SPA

I prezzi del presente catalogo sono tutti IVA esclusi.

Ordini

Gli ordini si intendono accettati solo dopo nostra approvazione, che può essere tacita con l'evasione dell'ordine od esplicita con conferma scritta. La merce offerta per pronta spedizione o consegna si intende sempre con la clausola "per quanto in tempo e salvo il venduto". L'evasione degli ordini avviene sempre, a prescindere dalla quantità ordinata, in confezioni standard o multipli delle stesse; qualora il committente esiga confezioni in quantità differenti dalle standard, le stesse verranno approntate come richieste ma senza sconti di quantità e salvo maggiori addebiti per costi di gestione. In caso di mancato ritiro delle merci ordinate, da parte nostra potremo pretendere l'esecuzione del contratto oppure la sua risoluzione: in questo ultimo caso il committente dovrà corrispondere il 20% dell'importo delle forniture a titolo di penale.

Prezzi

I prezzi si intendono per merce resa f.co ns. magazzino. I prezzi esposti a listino hanno la stessa validità del listino stesso, i prezzi relativi a nostre offerte verbali o scritte non possono avere validità superiore a trenta giorni di calendario, salvo periodo inferiore da noi specificato in fase d'offerta. In ogni caso i prezzi esposti o comunicati possono subire variazioni senza preavviso per improvvisa variazione del costo della materia prima, dei costi di produzione o del costo di mano d'opera per quanto riguarda i prodotti di nostra fabbricazione, per improvvisa variazione dei costi all'origine o variazioni repentine del tasso di cambio della nostra moneta per quanto riguarda i prodotti da noi commercializzati e/o importati.

Confezione ed imballo

Per ogni fattura viene addebitato quale concorso spese confezione ed imballo un importo pari all'1,5% del valore netto merce con un minimo forfettario di Euro 2,5.

Pagament

I pagamenti devono essere effettuati al nostro domicilio entro i termini esposti sulla fattura. L'accettazione di cambiali o l'emissione di tratte non costituisce deroga né al luogo di pagamento né ai termini esposti in fattura. Qualsiasi controversia non darà diritto alla sospensione o modificazione dei termini di pagamento convenuti.

Interessi di mora

Il mancato rispetto dei termini di pagamento riportati in fattura viene considerato come condizione sufficiente per la messa in mora senza altro avviso, in conseguenza dal giorno successivo alla scadenza pattuita viene conteggiato il periodo di mora sino al momento della reale disponibilità da parte nostra della cifra dovuta; il tasso d'interesse che verrà applicato per ritardato pagamento è esposto su ogni fattura. L'addebito degli interessi di mora non crea pregiudizio alla sospensione da parte nostra delle forniture sino a definizione dei pagamenti sospesi.

Clausola di riservato dominio

Tutti i nostri materiali sono venduti con patto di riservato dominio. Pertanto sino a che non saranno integralmente pagate le fatture, i materiali si intendono di ns. proprietà, ai sensi dell'art. 1523 C.C..

Consegna

I termini di consegna non sono tassativi e pertanto devono intendersi approssimativi; verificandosi casi fortuiti o di forza maggiore (compreso il caso di guerra, di mobilitazione o di requisizione) ci riserviamo il diritto di annullare in tutto od in parte le ordinazioni, senza che il committente possa richiedere risarcimento di qualsiasi danno. Le avarie alle macchine, le interruzioni o limitazioni di energia elettrica o gas, i ritardi o l'insufficienza dei vagoni ferroviari e mezzi di trasporto, nonché qualsiasi fatto accidentale da cui esuli la nostra colpa costituiscono casi fortuiti e di forza maggiore.

Spedizione

La merce viaggia sempre a rischio e pericolo del committente, viene esclusa ogni nostra responsabilità, anche in caso di vendita franco destino o stazione arrivo. E' dovere del committente verificare la condizione dei colli prima del ritiro, facendo le dovute riserve a chi di ragione in caso di differenze di peso o di constatate avarie. Eventuali assicurazioni sono a carico del committente e devono essere richieste esplicitamente nell'ordine. In caso di mancata indicazione da parte del committente delle modalità di spedizione, agiremo su nostra iniziativa al meglio nell'interesse del committente, ma senza alcuna responsabilità per quanto riguarda le tariffe e la via di trasporto prescelta.

Reclami e resi

Non si accettano reclami trascorsi otto giorni dal ricevimento della merce. Per nessun motivo sarà accettata di ritorno, senza nostra autorizzazione scritta, merce regolarmente ordinata. Sui resi per errore del cliente verrà effettuato l'accredito a scadenza dell'80% dell'importo, trattenendo il 20% con un minimo comunque di 50 Euro a titolo di rimborso spese commerciali, amministrative e di riconfezionamento.

Garanzia

Garantiamo i nostri prodotti contro i difetti di fabbricazione, ma in ogni caso la nostra responsabilità è limitata alla sostituzione gratuita dei particolari da noi fabbricati o commercializzati, purché non siano stati modificati, manomessi o ne sia stato fatto un uso improprio. Non viene comunque accettata alcuna responsabilità per qualunque conseguenza e/o danno derivante dalla merce fornita, compresi: costi di mano d'opera per smontaggi e/o montaggi, costi di selezione, costi per l'eventuale acquisto di parti complementari e costi per fermi di produzione. Le caratteristiche, le prestazioni, i pesi e le misure indicati nei cataloghi si intendono del tutto indicativi ed approssimativi e possono variare senza preavviso. Per i materiali non di nostra fabbricazione, la garanzia viene concessa con tutte le limitazioni che ci dovessero essere imposte dai nostri fornitori.

Foro competente

Per ogni controversia è competente il Foro di Milano.

N.B. Le suddette condizioni si intendono accettate integralmente ed incondizionatamente con l'emissione di ordinazione scritta o verbale, salvo nostre specifiche deroghe scritte.

Il presente catalogo è proprietà della GANDINI S.p.A. ed è vietata la riproduzione anche parziale.